Cdk1 and Cdk2 activity levels determine the efficiency of replication origin firing in Xenopus.

نویسندگان

  • Liliana Krasinska
  • Emilie Besnard
  • Emilie Cot
  • Christiane Dohet
  • Marcel Méchali
  • Jean-Marc Lemaitre
  • Daniel Fisher
چکیده

In this paper, we describe how, in a model embryonic system, cyclin-dependent kinase (Cdk) activity controls the efficiency of DNA replication by determining the frequency of origin activation. Using independent approaches of protein depletion and selective chemical inhibition of a single Cdk, we find that both Cdk1 and Cdk2 are necessary for efficient DNA replication in Xenopus egg extracts. Eliminating Cdk1, Cdk2 or their associated cyclins changes replication origin spacing, mainly by decreasing frequency of activation of origin clusters. Although there is no absolute requirement for a specific Cdk or cyclin, Cdk2 and cyclin E contribute more to origin cluster efficiency than Cdk1 and cyclin A. Relative Cdk activity required for DNA replication is very low, and even when both Cdk1 and Cdk2 are strongly inhibited, some origins are activated. However, at low levels, Cdk activity is limiting for the pre-replication complex to pre-initiation complex transition, origin activation and replication efficiency. As such, unlike mitosis, initiation of DNA replication responds progressively to changes in Cdk activity at low activity levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical biology in a Cdk network

Cyclin-dependent kinases (Cdks) are essential for the control of cell cycle transitions, and changes in activity of a single Cdk1-cyclin B complex can order the cell cycle in fission yeast. Using mathematical modelling and experiments in Xenopus egg extracts, we have shown that it is not Cdk1 activity per se , that determines the cell cycle, but the ratio of activities of Cdk1 and the Cdk1-coun...

متن کامل

SUMO2/3 modification of cyclin E contributes to the control of replication origin firing

The small ubiquitin-like modifier (SUMO) pathway is essential for the maintenance of genome stability. We investigated its possible involvement in the control of DNA replication during S phase by using the Xenopus cell-free system. Here we show that the SUMO pathway is critical to limit the number and, thus, the density of replication origins that are activated in early S phase. We identified c...

متن کامل

An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells

In vertebrates Cdk1 is required to initiate mitosis; however, any functionality of this kinase during S phase remains unclear. To investigate this, we generated chicken DT40 mutants, in which an analog-sensitive mutant cdk1 as replaces the endogenous Cdk1, allowing us to specifically inactivate Cdk1 using bulky ATP analogs. In cells that also lack Cdk2, we find that Cdk1 activity is essential f...

متن کامل

Tight Chk1 Levels Control Replication Cluster Activation in Xenopus

DNA replication in higher eukaryotes initiates at thousands of origins according to a spatio-temporal program. The ATR/Chk1 dependent replication checkpoint inhibits the activation of later firing origins. In the Xenopus in vitro system initiations are not sequence dependent and 2-5 origins are grouped in clusters that fire at different times despite a very short S phase. We have shown that the...

متن کامل

Cyclin B-cdk1 kinase stimulates ORC- and Cdc6-independent steps of semiconservative plasmid replication in yeast nuclear extracts.

Nuclear extracts from Saccharomyces cerevisiae cells synchronized in S phase support the semiconservative replication of supercoiled plasmids in vitro. We examined the dependence of this reaction on the prereplicative complex that assembles at yeast origins and on S-phase kinases that trigger initiation in vivo. We found that replication in nuclear extracts initiates independently of the origin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 27 5  شماره 

صفحات  -

تاریخ انتشار 2008